Simultaneous determination of Mn2+ and Fe3+ as 4,4'[(4-cholorophenyl)methylene] bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) complexes in some foods, vegetable and water samples by artificial neural networks.
نویسندگان
چکیده
A simple and sensitive spectrophotometric method to the simultaneous determination of Mn(2+) and Fe(3+) in foods, vegetable and water sample with the aid of artificial neural networks (ANNs) is described. It relies on the complexation of analytes with recently synthesised bis pyrazol base ligand as 4,4'[(4-cholorophenyl)methylene] bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)(CMBPP). The analytical data show that the ratio of ligand to metal in metal complexes is 1:1 and 1:2 for Fe(3+) and Mn(2+), respectively. It was found that the complexation reactions are completed at pH 6.7 and 5 min after mixing. The results showed that Mn(2+) and Fe(3+) could be determined simultaneously in the range of 0.20-7.5 and 0.30-9.0 mgl(-1), respectively. The analytical characteristics of the method such as the detection limit and the relative standard error predictions were calculated. The data obtained from synthetic mixtures of the metal ions were processed by radial basis function networks (RBFNs) and feed forward neural networks (FFNNs). The optimal conditions of the neural networks were obtained by adjusting various parameters by trial-and-error. Under the working conditions, the proposed methods were successfully applied to the simultaneous determination of elements in different water, tablet, rice, tea leaves, tomato, cabbage and lettuce samples.
منابع مشابه
Nanomagnetite-Fe3O4 as a highly efficient, green and recyclable catalyst for the synthesis of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s
Nanomagnetite-Fe3O4 is used as a highly efficient, mild, green and recyclable nanomagnetite catalyst for the synthesis of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives in solvent-free conditions. The condensation reaction of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one with aromatic aldehydes affords the title compounds in high yields and short reaction times. The nanocataly...
متن کاملNanomagnetite-Fe3O4 as a highly efficient, green and recyclable catalyst for the synthesis of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s
Nanomagnetite-Fe3O4 is used as a highly efficient, mild, green and recyclable nanomagnetite catalyst for the synthesis of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives in solvent-free conditions. The condensation reaction of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one with aromatic aldehydes affords the title compounds in high yields and short reaction times. The nanocataly...
متن کاملSynthesis of 4,4´-(Arylmethylene)bis(1H-pyrazol-5-ols) catalyzed by nanosilica supported perchloric acid in water
Reaction between aromatic aldehydes and 3–methyl-1-phenyl-2-pyrazoline-5-one catalyzed by nano-SiO2/HClO4 in water under reflux provided a simple and efficient route for the synthesis of 4-((5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)(aryl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-ol derivatives in high yields.
متن کاملSynthesis of 4,4´-(Arylmethylene)bis(1H-pyrazol-5-ols) catalyzed by nanosilica supported perchloric acid in water
Reaction between aromatic aldehydes and 3–methyl-1-phenyl-2-pyrazoline-5-one catalyzed by nano-SiO2/HClO4 in water under reflux provided a simple and efficient route for the synthesis of 4-((5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)(aryl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-ol derivatives in high yields.
متن کاملPreparation, characterization and testing the catalytic activity of a new acidic ionic liquid in multicomponent reactions
In this study, N1,N1,N2,N2-tetramethylethane-1,2-diamine was reacted with chlorosulfonic acid to afford N1,N1,N2,N2-tetramethyl-N1,N2-bis(sulfo)ethane-1,2-diaminium chloride ([TMBSED][Cl]2</su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Food chemistry
دوره 138 2-3 شماره
صفحات -
تاریخ انتشار 2013